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Graph convolutional networks (GCNs) successfully generalize convolutional neural networks to handle
the graphs with high-order arbitrary structures. However, most existing GCNs variants consider only
the local geometry of row vectors of high-dimensional data via example graph Laplacian, while neglect-
ing the manifold structure information of column vectors. To address this problem, we propose the
example-feature graph convolutional networks (EFGCNs) for semi-supervised classification.
Particularly, we introduce the definition of the spectral example-feature graph (EFG) convolution that
simultaneously utilizes the example graph Laplacian and feature graph Laplacian to better preserve
the local geometry distributions of data. After optimizing the spectral EFG convolution with the first-
order approximation, a single-layer EFGCNs is obtained. It is then further extended to build a multi-
layer EFGCNs. Extensive experiments on remote sensing and citation networks datasets demonstrate
the proposed EFGCNs show superior performance in semi-supervised classification compared with
state-of-the-art methods.

� 2021 Published by Elsevier B.V.
1. Introduction

With the rapid development of Internet technologies and com-
puter hardware, massive high-dimensional data (e.g. images,
videos and audio) can be easily generated and acquired by mobile
devices. These data contain a huge amount of useful and valued
information. How to effectively extract such information from
those massive data and explore its inherent laws and essential
structures has become a hot issue in the fields of machine learning,
data mining, pattern recognition and data representation learning
[1]. In recent years, many data representation learning models
have been proposed. Examples include the auto-encoder [2,3],
canonical correlation analysis [4] and convolutional neural net-
works (CNNs) [5,6]. These models play a significant role in many
practical applications, such as human activity recognition and
detection [7], remote sensing image recognition and annotation
[8,9] and video retrieval [10]. CNNs denote a data representation
learning method that combines artificial neural networks and deep
learning theory. Different from traditional methods that manually
extract sample features for specific tasks, CNNs simulate the
human visual system to automatically extract significant informa-
tion via the hierarchical abstraction of data. CNNs and CNN-based
variants have already achieved great success in the areas of com-
puter vision [11] and natural language processing [12]. These
CNN-based models can efficiently handle the Euclidean data [13]
with regular spatial structures and explore effective data
representations.

However, in real life, there exist substantial graph-structured
data with irregular grid structures, such as remote sensing images.
Thus, the traditional convolution operation of CNNs cannot handle
such data effectively because of the irregular spatial structures and
high-order characteristics of data [14]. To learn better sample fea-
tures of the graph-structured data in non-Euclidean data domains,
graph neural networks (GNNs) [15] have caught widespread atten-
tion and exhibited great advantages in the representation learning
of remote sensing images. They are also known as the typical mod-
els of graph representation learning [16]. Existing GNN-based
models can be divided into spatial-domain-based models and
spectral-domain-based models.
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Utilizing the spatial structure information of original graph-
structured data, they construct or capture the neighborhood node
features of each sample on graphs. The spatial-domain-based mod-
els directly apply a feature aggregation operation to each sample
and its neighborhood nodes. In GraphSAGE [17], the aggregation
function was introduced to the graph convolution operation to
build an inductive graph structure learning model. It can directly
generate the embedding representation of unseen nodes when
the graph structures change. In learnable graph convolutional net-
works [18], using the k-largest neighborhood node selection
method on each node of graphs, graph-structured data were trans-
formed into regular grid-like data, and then applied with the stan-
dard CNN convolution. The gated graph neural networks [19]
continuously updated the representation of each node with its
neighborhood nodes information on graphs via introducing gated
recurrent units [20] and back-propagation through time to train
its model. Veličković [21] assigned different weights for the neigh-
borhoods of each central node via the attention mechanism [22].

Transforming the convolution in the time domain into the point
multiplication in the frequency domain according to spectral graph
theory, the spectral-domain-based models learn a mapping rule for
graph-structured data, and obtain the feature representation of
each node that fuses its neighborhood node information. As a clas-
sical graph representation learning model in the spectral domain,
graph convolutional networks (GCNs) [23] extended the classical
CNNs to non-Euclidean data utilizing the spectral filter with the
first-order polynomial to acquire the direct neighborhood informa-
tion of each node. To obtain richer sample structure relationships,
Li et al. [24] proposed to learn the optimal residual graph Laplacian
using the feature transform and distance metric of nodes. Yadati
et al. [25] and Feng et al. [26] generalized GCNs into the hyper-
graph domain utilizing the hypergraph Laplacian matrix to express
complex relationships between samples. Compared with the Lapla-
cian matrix with the one-order derivative, HesGCNs [27] and
GpLCNs [28] can utilize more abundant structure information
because of the existence of Hessian’s and p-Laplacian’s high-
order derivatives.

The above-mentioned spectral graph convolutional networks
consider only the example graph-based structure relationships
that represent the local geometry distributions of row vectors of
high-dimensional data. However, they ignore the structure infor-
mation of the feature graph that carries the geometric structures
of column vectors of high-dimensional data. In other words, due
to the shortcomings of structure information of the example graph,
GCNs fail to learn more significant data features via the convolu-
tion operation of original input feature information.

To address this issue, in this paper, we propose the example-
feature graph convolutional networks (EFGCNs) to simultaneously
consider feature-graph and example-graph space structure infor-
mation. In particular, we generalize the spectral example graph
convolution into the spectral EFG graph convolution. A single-
layer convolution layer rule of EFGCNs is then designed to optimize
the first-order approximation of the spectral EFG graph convolu-
tion. A multi-layer EFGCNs model is further built to automatically
extract more efficient data features. In comparison to GCNs, our
proposed EFGCNs can better exploit the local geometry of feature
distributions and data distributions during the training process.
To demonstrate the classification performance of our proposed
EFGCNs, we conduct extensive experiments on the RSSCN7 and
SAT-6 datasets for remote sensing classification, on the Citesser,
Cora and NELL datasets for citation networks classification.

In summary, the contributions of this paper can be written as
follows:

(1) We develop the definition of the spectral EFG convolution
from the spectral convolution on an example graph. Compared
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with the example graph or feature graph, it is able to simultane-
ously learn the local geometry of row and column vectors of
high-dimensional data via the example-feature graph.
(2) We propose an efficient convolution layer rule of spectral
EFG convolution with the first-order approximation. This forms
the single-layer of our proposed example-feature graph convo-
lutional networks (EFGCNs).
(3) Based on the single-layer convolution rule, we further build
a multi-layer EFGCNs.
(4) To evaluate the proposed EFGCNs with the application of
semi-supervised classification, we conduct extensive experi-
ments on five databases for remote sensing classification and
citation networks classification. Experiment results demon-
strate the superior performance of EFGCNs in comparison with
existing semi-supervised learning models.

The remainder of this paper is arranged as follows: We briefly
summarize several related works in Section 2. Sections 3–5 present
the theoretical analysis of our proposed spectral EFG convolution,
the single-layer and multi-layer EFGCNs. The experimental results
on five datasets are discussed and analyzed in Section 6. Finally, we
conclude this paper in Section 7.
2. Related Works

Before introducing our proposed algorithm, this section briefly
reviews the related works, such as graph convolutional networks
and graph principal component analysis.
2.1. Graph Convolutional Networks

In principle, the convolution is defined as the linear operator
diagonalized in the Fourier basis [29]. Bruna et al. [30] extended
the classical CNNs to the irregular-structure data domains by using
the eigenvectors of the graph Laplacian operator to represent the
corresponding Fourier basis. To construct the spectral filter with
spatial localization and small computational complexity, Henaff
et al. [31] gave the definition of spectral convolution on the single
graph (example graph). It is defined as the multiplication of fre-
quency domain for a signal X and a non-parametric spectral filter
gh L1ð Þ in the Fourier domain, i.e.

gh L1ð ÞHX ¼ gh UKUT
� �

X ¼ Ugh Kð ÞUTX ð1Þ

where L1 denotes the normalized graph Laplacian, i.e.

L1 ¼ IN � D
�1

2
D ADD

�1
2

D (L1 ¼ UKUT). H denotes the convolution opera-
tion. U and K are the eigenvectors and eigenvalues of L1 separately.
In addition, gh Kð Þ ¼ diag hð Þ. IN denotes the identity matrix. AD

denotes the node’s adjacency relationship matrix. DD is the degree
matrix about AD. L1 expresses the local geometry structures of
example graph or data manifold. It is computed according to the
row vectors of input data.

To further reduce the learning complexity of spectral filter, Def-
ferrard [32] introduced the Chebyshev polynomials with K orders
to achieve the polynomial parametrization of localized spectral fil-
ter gh Kð Þ, i.e. gh Kð Þ ¼PK

K¼0hKTK Kð Þ. Kipf et al. [23] considered only
direct neighborhoods of each node on the simple graph by using
the spectral filter with the first order Chebyshev polynomials
(K ¼ 1). Finally, a linear layer-wise model of GCNs is proposed, i.e.

gh L1ð ÞHX ¼ DD
�!�1

2 AD þ INð ÞDD
�!�1

2Xh ð2Þ

where DDð Þ��!
ii ¼

P
j AD þ INð Þij. That is Eq. (2) denotes either the out-

put signals after removing signal noise or the extracted sample
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features after fusing the structure information AD þ INð Þ and feature
information X of original data.

2.2. Graph Principal Component Analysis

Principal component analysis (PCA) [33] is a linear data repre-
sentation learning algorithm, and aims to find optimal Q-
dimensional (low-dimensional) linear subspace. Thus, the informa-
tion representation of high-dimensional data can be concentrated
in a small number of data dimensions. PCA can achieve data
dimensionality reduction. It can be expressed as the following opti-
mization problem:

min
U;V

kXT � UVTk2F s:t:VTV ¼ IN ð3Þ

where X ¼ x1; x2; � � � xNð Þ 2 RN�M(N samples withM-dimensional fea-
tures) denotes original high-dimensional data, XT 2 RM�N denotes
the transposed matrix of X. VT 2 RQ�N (N samples with Q-
dimensional features) denotes output sample features after projec-
tion. U 2 RM�Q is the projection matrix. However, PCA is efficient for
high-dimensional data with a linear geometry structure. Jiang et al.
[34] extended PCA to non-linear data domain by introducing Lapla-
cian Eigenmap (LE) [35] to preserve the local geometry distributions
of the data manifold (local geometry of row vectors of high-
dimensional data). The objective function can be written as:

min
U;V

kXT � UVTk2F þ cTr VTLDV
� �

s:t:VTV ¼ IN ð4Þ

where c denotes the balance parameter of its objective function.
TrðÞ represents the matrix’s trace. Graph Laplacian PCA (gLPCA)
[34] used the non-normalized graph Laplacian matrix, i.e.
LD ¼ DD � AD with DDð Þii ¼

P
j ADð Þij . AD 2 RN�N denotes the adja-

cency relationship matrix between different samples and AD can
be acquired by the k-nearest neighboring method with Euclidean
distance to data X.

To consider the local geometry distributions of the feature man-
ifold (local geometry of column vectors of high-dimensional data)
simultaneously on gLPCA, He et al. [36] and Liu et al. [37] proposed
dual graph Laplacian PCA, i.e.

min
U;V

kXT � UVTk2F þ cTr VTLDV
� �

þ bTr UTLFU
� �

s:t:VTV ¼ IN ð5Þ

where c and b are all regularization parameters to balance the
reconstruction error of the first term, local geometry distributions
of data manifold, and feature manifold in the objective function of
dual graph Laplacian PCA. In addition, the computing method of
LF is similar to that of LD, i.e. LF ¼ DF � BF with DFð Þii ¼

P
j BFð Þij.

BF 2 RM�M can be computed by using the k-nearest neighboring
method with Euclidean distance to

XT ¼ x1ð ÞT ; x2ð ÞT ; � � � xNð ÞT
� �

2 RM�N . LD and LF denote the Laplacian

matrix about the adjacency matrix AD and BF respectively.
Wang et al. [38] generalized the dual graph Laplacian PCA from

simple graph to complex graphs (hypergraph), and aimed to better
utilize local grouping information between samples, i.e.

min
U;V

kXT � UVTk2F þ cTr VTLDHV
� �

þ bTr UTLFHU
� �

s:t:VTV

¼ IN ð6Þ
where LDH and LFH are non-normalized hypergraph Laplacian matri-
ces. The detailed computation process can be found in [38,9].
Recently, many researchers proposed the dual graph regularized
data representation learning models by utilizing the geometry
structure of feature distributions and sample distributions. For
example, Yin et al. [39] proposed the dual graph regularized latent
low-rank representation for subspace clustering. Inspired with the
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ensemble manifold learning, Li et al. [40] introduced the nonnega-
tive matrix trifactorization based relational multi-manifold co-
clustering algorithm. This method aimed to better utilize the intrin-
sic manifold structures between the samples and features. Tong
et al. [41] proposed the dual graph regularized nonnegative matrix
factorization for hyperspectral unmixing. Wang et al. [42] proposed
the dual hypergraph regularized supervised non-negative matrix
factorization for the genes and tumor classification tasks by con-
structing the feature hypergraph and data hypergraph to learn
richer data structure information.

3. Example-Feature Graph

Existing GCNs utilize only the example graph to capture the
local structure relationships of row vectors of high-dimensional
data. Due to the complexity of data structures, it may lead to the
shortcoming of the acquired structure information. To address this
issue, we propose an EFG to simultaneously consider the manifold
structure of example graph and feature graph. Introducing the
spectral convolution, our proposed EFG fuses the structure infor-
mation of the sample graph and feature graph into one unified
graph, called the example-feature graph that simultaneously
expresses the geometry structure of row and column vectors of
high-dimensional data. Compared with the sample graph or fea-
ture graph, EFG can fit the data exactly. Next, we describe how
to generate the EFG by the fusion of input example graph and fea-
ture graph.

We first give the definition of EFG. It is the spectral convolution

on example graph L1 ¼ UKUT and feature graph L2 ¼ VK1VT , and
can be expressed as the product of input signal X, a spectral filter
gh L1ð Þ of example graph and a spectral filter gh L2ð Þ of feature graph
in the frequency domain (Fourier domain).

GCNs can be regarded as the process of removing noise from
input signals via gh L1ð Þ. However, GCNs cannot remove multiple
types of signal noise. Thus, EFG can learn momentous signal fea-
tures via gh L1ð Þ and gh L2ð Þ.

gh L1ð ÞH gh1 L2ð ÞHX
� � ¼ gh UKUT

� �
gh1 VK1VT
� �

X
� �

¼ Ugh Kð ÞUTVgh1 K1
� �

VTX
ð7Þ

where L2 expresses the normalized feature graph Laplacian, i.e.

L2 ¼ IN � D
�1

2
F BFD

�1
2

F . K1 and V denote the eigenvalues and eigenvec-

tors of L2. h1 and h are filter parameters of spectral filters gh1 L2ð Þ
and gh L1ð Þ. EFG is obtained fusing the space structure information
of example graph and feature graph via the convolution operation
in Eq. (7).

However, Eq. (7) needs to perform eigendecomposition for the
feature graph Laplacian matrix and example graph Laplacian
matrix on every forward propagation. Thus, it leads to high compu-
tation complexity. To overcome this issue, we use K-order Cheby-
shev polynomials [32] to obtain a K-localized filters for

gh Kð Þ ¼PK
K¼0hKTK Kð Þ and gh1 K1

� �
¼PK1

K1¼0h
1
K1T

1
K1 K1
� �

. Finally,

we can obtain a K-order localized spectral EFG convolution. Let
Z ¼ gh L1ð ÞH gh1 L2ð ÞHX

� �
and Eq. (7) can be simplified into the fol-

lowing form:

Z ¼
XK
K¼0

hKTK L1
!� �XK1

K1¼0

h1K1T
1
K1 L2

!� �
X ð8Þ

where the computation complexity of each spectral filter range

from O N2
� �

or O M2
� �

to O Kjejð Þ or O K1jejð Þ.
L1
!¼ 2

kmax
L1 � IN; L2

!¼ 2
k1max

L2 � IN with the largest eigenvalue kmax of

L1 and k1max of L2. In addition, the Chebyshev polynomials TK Xð Þ



Fig. 1. The framework of the multi-layer EFGCNs.

Fig. 2. Sample images of the RSSCN7 dataset. From left to right, each column represents a class, such as grass, field, parking, river lake, forest, resident and industry.
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are computed by the following method: T0 Xð Þ ¼ 1; T1 Xð Þ ¼ X with
TK Xð Þ ¼ 2XTK�1 Xð Þ � TK�2 Xð Þ. Finally, we can obtain a complemen-
tary EFG via a K-order localized spectral EFG convolution in Eq.
(8). Next, we will introduce the proposed example-feature graph
convolutional networks (EFGCNs).
4. Single-Layer EFGCNs

Using the spectral EFG convolution layer rule in Eq. (8), one can
be built a deep-layer spectral CNNs model. However, its computa-
tion complexity is quite high because this model contains a large
number of filter coefficients and the N-th power of matrices. More-
over, the model in Eq. (8) will lead to the overfitting problem for
deep networks [22]. (When the K-order number of the model
increases, the structure information between data will be dense.
What’s more, the classification accuracy of the model may not be
effectively improved. It has been demonstrated in GCNs [23].) To
obtain an optimized single-layer EFGCNs, we develop an optimiza-
tion of the spectral EFG convolution layer rule, and then limit the
orders K and K1 of Chebyshev polynomials. In this paper, we set
K ¼ 1 and K1 ¼ 1 (The direct neighborhood structure information
of each central node) because the first-order approximation of
spectral EFG convolution can better preserve the intrinsic manifold
structure of example graph and feature graph. Thus, Eq. (8) can be
simplified into the following form:
Fig. 3. Sample examples of the SAT-6 dataset. From left to right, each column represen
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Z ¼ h0 þ h1 2
kmax

L1 � IN
� �� �

h10 þ h11
2

k1max
L2 � IN

� �� �
X ð9Þ

This definition has four filter parameters h0; h1; h
1
0 and h11 for

each node of the example graph and feature graph. To better
understanding the simplification processes, we make a further
derivation for Eq. (9), i.e.

Z ¼ h0 � h1 þ 2
kmax

h1L1

� �
h10 � h11 þ

2
k1max

h11L2

 !
X ð10Þ

For Eq. (10), it exists many model parameters. If we use Eq. (10)
to build our single-layer EFGCNs, it will cause the overfitting prob-
lem of the model. Thus, how to reduce the overfitting problem and
the computation complexity of the single-layer EFGCNs using a
single filter parameter h is very important. Eq. (10) can be further
simplified via deduction from Eq. (11) to Eq. (14). To solve this
problem, following, we detailed analyze the theoretical analysis
process from Eq. (10) to Eq. (14).

Let h0 � h1 ¼ h2 h2 – 0ð Þ and h10 � h11 ¼ h3 h3 – 0ð Þ. Thus, Eq. (10)
can be further simplified:

Z ¼ h2þ 2
kmax

h1 IN �D
�1
2

D ADD
�1

2
D

� �� �
h3þ 2

k1max
h11 IN �D

�1
2

F BFD
�1

2
F

� �� �
X

¼ 2
kmax

kmax
2 h2þh1

� �� 2
kmax

h1D
�1

2
D ADD

�1
2

D

� �
2

k1max

k1max
2 h3þh11

� �
� 2

k1max
h11D

�1
2

F BFD
�1
2

F

� �
X

ð11Þ
ts a class, such as buildings, water bodies, trees, barren land, grassland, and roads.
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Let kmax
2 h2 þ h1 ¼ h4 and k1max

2 h3 þ h11 ¼ h5.

Z ¼ 2
kmax

h4 � h1D
�1
2

D ADD
�1
2

D

� � 2
k1max

h5 � h11D
�1

2
F BFD

�1
2

F

� �
X ð12Þ

Let h4 ¼ �h1 ¼ h6 and h5 ¼ �h11 ¼ h7.

Z ¼ 2
kmax

2
k1max

h6 IN þ D
�1

2
D ADD

�1
2

D

� �
h7 IN þ D

�1
2

F BFD
�1
2

F

� �
X ð13Þ

Let h ¼ h6h7. Finally, Eq. (11) can be simplified to the following
form:

Z ¼ 2
kmax

2
k1max

IN þ D
�1
2

D ADD
�1
2

D

� �
X IN þ D

�1
2

F BFD
�1
2

F

� �
h

¼ 4
kmaxk

1
max

A
!
X B
!
h

ð14Þ

A
!¼ IN þ D

�1
2

D ADD
�1
2

D (example graph based structure information

matrix) and B
!¼ IN þ D

�1
2

F BFD
�1

2
F (structure information matrix

based on feature graph). h 2 RM�G is the filter parameter learned
from EFG. When a signal X 2 RN�M (N samples with M dimensional
features) is regarded as the input, we can obtain the samples’ fea-
ture matrix Z 2 RN�G after spectral EFG convolution.

Using the definition in Eq. (14) of the spectral EFG convolution
with one-order Chebyshev polynomial, we can obtain the single-

layer EFGCNs f X; A
!
; B
!
;W

� �
in the following form:

H Lþ1ð Þ ¼ r 4
kmaxk

1
max

A
!
H Lð Þ B

! Lð ÞW Lð Þ
 !

ð15Þ
Fig. 4. Mean recognition rates of each class on the Cora d
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where, B
! Lð Þ ¼ IN þ D

�1
2

F B Lð Þ
F D

�1
2

F . H Lþ1ð Þ denotes the extracted sample

features of each layer, H 0ð Þ ¼ X. Due to the change of the dimension

for column vectors of H Lþ1ð Þ, the adjacency matrix B Lð Þ
F of each layer

will be recalculated. W Lð Þ expresses the weight matrix trained dur-
ing the training process. r denotes the nonlinear activation
function.
5. Multi-Layer EFGCNs

Stacking Eq. (15), we can further build the multi-layer EFGCNs
for semi-supervised classification. Fig.1 describes the framework
of the multi-layer example-feature graph convolutional networks
(EFGCNs). The multi-layer EFGCNs can be written in Eq. (16).

H Lþ1ð Þ¼classifier
4

kmaxk
1
max

A
!

r 4
kmaxk

1
max

A
!

���r 4
kmaxk

1
max

A
!
XB
!

0ð ÞW 0ð Þ
 !

...

 !
B
!

L�1ð ÞW L�1ð Þ
 ! !

B
!

Lð ÞW Lð Þ
 !

ð16Þ

For multi-layer EFGCNs, the initial graph-Laplacian-based

example-graph structure information A
!

and feature-graph struc-

ture information B
! 0ð Þ are constructed from original data X and

XT , respectively. The detailed computation processes of AD and BF

can be found in Section 2.2. Due to the change of output feature
column vector dimensions on each convolution layer, the structure
information of the feature graph (except for the first layer) should
be recomputed according to output features of the last convolution
layer. Algorithm 1 briefly illustrates the implementation processes
of multi-layer EFGCNs for semi-supervised classification.
ataset. Each subfigure corresponds to a single class.



Fig. 5. Mean recognition rates of each class on the Citeseer dataset. Each subfigure corresponds to a single class.

Table 1
Descriptions of experimental datasets.

Dataset Nodes Classes Dimensions

RSSCN7 2800 7 4096
SAT-6 405000 6 784
Citeseer 3327 6 3703
Cora 2708 7 1433
NELL 65755 210 5414

S. Fu, W. Liu, K. Zhang et al. Neurocomputing 461 (2021) 63–76
Here, we build a two-layer EFGCNs based on Eq. (15) for our
experiments to evaluate the classification performance of EFGCNs,
i.e.

H 2ð Þ ¼ 4
kmaxk

1
max

A
!

RELU
4

kmaxk
1
max

A
!
X B
! 0ð ÞW 0ð Þ

 ! !
B
! 1ð ÞW 1ð Þ ð17Þ

where RELU is the Rectified Linear Unit, i.e. f xð Þ ¼ max 0; xð Þ.
W 0ð Þ 2 RM�G1 is the filter coefficient matrix of the first layer. The

example-graph structure information A
!

and feature-graph struc-

ture information B
! 0ð Þ of the first layer are computed from original

data X or XT . After the spectral convolution of the first layer, we
can obtain the sample features H 1ð Þ 2 RN�G1, i.e.

H 1ð Þ ¼ RELU
4

kmaxk
1
max

A
!
X B
! 0ð ÞW 0ð Þ

 !
ð18Þ

Then, we recalculate B
! 1ð Þ 2 RG1�G1 according to H 1ð Þ. In addition,

the output sample features of the first layer are regarded as the
input of the second layer. Finally, the two-layer EFGCNs obtain
the final data features H 2ð Þ 2 RN�G2 with W 1ð Þ 2 RG1�G2 (the dimen-
sion of G2 is equal to the number of categories for different data-
sets), i.e.

H 2ð Þ ¼ 4
kmaxk

1
max

A
!
H 1ð Þ B

! 1ð ÞW 1ð Þ ð19Þ
69
Algorithm1: Multi-Layer Example-Feature Graph
Convolutional Networks (EFGCNs)

Input: Data X
Parameter: Dropout rate, learning rate, hidden units, L2

regularization.
Output: Mean classification accuracy
1: Construct adjacency matrix AD and BF of the example graph

L1 and feature graph L2 (see Section 2.2)

2: Compute the initial structure information A
!

and B
! 0ð Þ

3: Initialize the hyperparameters
4: for j ¼ 0 ! T � 1 (T denote the iteration numbers)

5: H 1ð Þ ¼ RELU 4
kmaxk

1
max

A
!
X B
! 0ð ÞW 0ð Þ

� �
.

6: Recalculate adjacency matrix BF , update structure

information B
! 1ð Þ

(continued on next page)
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a (continued)

Algorithm1: Multi-Layer Example-Feature Graph
Convolutional Networks (EFGCNs)

7: H 2ð Þ ¼ RELU 4
kmaxk

1
max

A
!
H 1ð Þ B

! 1ð ÞW 1ð Þ
� �

.

8: Recalculate adjacency matrix BF , update structure

information B
! 2ð Þ

9: � � �
10: Recalculate adjacency matrix BF , update structure

information B
! Lð Þ

11: H Lþ1ð Þ ¼ 4
kmaxk

1
max

A
!
H Lð Þ B

! Lð ÞW Lð Þ.

12: until convergence
(lines 6 to 11 denote the multi-layer convolution operations

of data X)

13: Obtain the final structure information B
! 1ð Þ, � � �, B! Lð Þ and

optimal weight information W 0ð Þ, � � �, W Lð Þ.

14: Send the extracted features H(L+1) to Softmax classifier.
15: Return the mean classification accuracy of data.
After two convolution layers, we feed the extracted data features
H 2ð Þ into the classifier and obtain the classification accuracy. In this
paper, we use the Softmax classifier [43]. In the back propagation of
EFGCNs, we use the cross entropy function [44] to evaluate our pro-
posed model. If the value of the objective function cannot reach a
specific threshold, we will repeat the training processes (Eq. (17))

until B
! 1ð Þ;W 0ð Þ andW 1ð Þ reach the optimal.We use the gradient des-

cent method [45] to update the weight matrix of each layer. Com-
pared with two-layer GCNs [23] that stack Eq. (2), our EFGCNs
simultaneously consider the local distributions of row vectors and
column vectors of high-dimensional data in each convolution layer
to form the complementary EFG structure information.

6. Experiments

In this section, we test our proposed EFGCNs and several exist-
ing semi-supervised learning models including HyperGCNs [25],
Fig. 6. Mean recognition rates of all categories on t
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GAT [21], GCNs [23], Chebyshev (K = 2) [32], Chebyshev (K = 3)
[32], Semi-supervised Embedding [46], Manifold Regularization
[47], HesGCNs [27], GpLCNs [28] and Multi-layer Perception [48]
using the RSSCN7 [49] and SAT-6 [50] datasets for remote sensing
scene classification, and the Citeseer [51], Cora [52] and NELL [53]
datasets for citation networks classification.

RSSCN7 dataset [49] is composed of 2800 images collected from
seven categories, including grass, field, parking, river lake, forest,
resident and industry. Each class contains 400 images. We resize
the original RSSCN7 images from 400*400 to 64*64 pixels, and then
extract their wavelet transform features by the Coiflets orthogonal
wavelet transform [54,55]. Several images in the RSSCN7 are
exhibited in Fig. 2.

SAT-6 dataset [50] consists of totally 405,000 RGB images with
28*28 pixels. All images are divided into six classes, such as build-
ings, water bodies, trees, barren land, grassland, and roads. In addi-
tion, we utilize the edge feature method to perform the pre-
processing of experimental images. Fig. 3 exhibits some images
of the SAT-6 dataset.

Citeseer [51] and Cora [52] are citation networks datasets. Cite-
seer contains a total of 3327 documents collected from HCI
(Human Computer Interaction), AI (Artificial Intelligence), ML
(Machine Language), DB (Database), IR (Information Retrieval)
and Agents. Cora contains seven classes, such as case-based, neural
networks, probabilistic-methods, genetic-algorithms,
reinforcement-learning, rule-learning and theory. The dataset is
composed of 2708 samples. Each document has many words. The
NELL dataset [53] is composed of a total of 65755 samples col-
lected from 210 classes. The dimension of each sample is 5414. It
exists 266144 link relationships between samples. Table 1 briefly
describes these five public datasets.

6.1. Experiment Settings

For RSSCN7, SAT-6, Citeseer, Cora and NELL, 1000 samples are
selected to form the testing set, 500 samples for the validation
set and the rest of the samples are employed for the training set.
(Our experiments use all samples of the Citeseer, Cora and RSSCN7,
and select 5000 data of the NELL and 3000 samples of the SAT-6 to
evaluate our proposed EFGCNs.) In our experiments, we randomly
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Fig. 7. Mean recognition rates of all categories on the (a) SAT-6 and (b) RSSCN7 datasets.
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select 10%, 20%, 30%, 40% and 50% images from the training sets
of RSSCN7 and SAT-6 as labeled images, the rest of the images are
used for unlabeled images. For Citeseer and Cora, we randomly
assign a specific label rate (20%, 30%, 40%, 50% and 60%) to their
training samples. For NELL, a specific percentage of data on training
set as labeled data, such as 10%, 15%, 20%, 25% and 30%.

During the training process of EFGCNs, we utilize the Adam
optimizer [56] with the learning rate of 0.01 to optimize hyperpa-
Fig. 8. Mean recognition rates of each class on the RSSCN7
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rameters. This aims to reduce the loss value of the objective func-
tion. The training process of EFGCNs will stop when the maximum
training iteration is 200 epochs or the loss value of the validation
set remains unchanged continuously for 10 epochs. To avoid the
overfitting problem, we also use the following hyperparameters,
such as dropout rate, the dimensions of hidden layer and L2 regu-
larization. The detailed (initial) experiment parameters are set as
follows (We make a manual fine-tuning for EFGCNs according to
dataset. Each subfigure corresponds to a single class.
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the default hyperparameters of the baseline model GCNs [23], and
then we select the most effective initial hyperparameters which
can let EFGCNs obtain the best classification performance.): (1)
For RSSCN7: 0.5 as the dropout rate, 64 as the dimensions of hid-
den layer and 5� 10�7 as the L2 regularization; (2) For SAT-6:
0.5 as the dropout rate, 64 as the dimensions of hidden layer and
5� 10�6 as the L2 regularization; (3) For Citeseer: 0.4 as the drop-
out rate, 32 as the dimensions of hidden layer and 5� 10�4 as the
L2 regularization; (4) For Cora: 0.5 as the dropout rate, 512 as the
dimensions of hidden layer and 5� 10�4 as the L2 regularization;
(5) For NELL: 0.4 as the dropout rate, 512 as the dimensions of hid-
den layer and 5� 10�6 as the L2 regularization.

6.2. Citation Networks Classification

In the existing GCNs and their variants, Citeseer, Cora and NELL
are commonly-used datasets. In this section, we first compare our
proposed EFGCNs with several existing semi-supervised learning
models, such as HyperGCNs [25] and GCNs [23] on the Citeseer,
Cora and NELL datasets. In Figs. 6 and 7, the x-axis denotes the
number of labeled images in the training set and the y-axis repre-
sents the average recognition rates of GCNs and EFGCNs. In Figs. 4,
5, 8 and 9, the y-axis denotes the mean recognition rates of the sin-
gle class (To better show our proposed EFGCNs on the single class’s
classification performance for the readers’ understanding, the
Appendix section in the form of tables (Tables 8–11) detailed
describes the mean recognition rates with standard deviations of
the single class.). In Table 2, the reported numbers express the
average recognition rates with 100 random runs under 120 (Cite-
seer) and 140 (Cora) labeled training samples. We follow the
experimental settings in [23], and the experimental results of the
comparison models (except GCNs) can be obtained from [23,28].

Figs. 4 and 5 illustrate the mean recognition rates of several
selected categories in the Citeseer and Cora datasets. From the
experiment results of Figs. 4–6 and Table 2, we can see that,
EFGCNs perform the best among all the competing methods. The
reason is that, compared with GCNs, EFGCNs can automatically
extract more important data information from the high-
dimensional input data. Essentially, considering the geometric
structures of row and column vectors of high-dimensional data
at the same time, our proposed EFGCNs can learn richer data fea-
tures to improve the classification of semi-supervised classification
Fig. 9. Mean recognition rates of each class on the SAT-6
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while taking advantage of the example graph and feature graph
based structure relationships during the training process.

From these results in Figs. 4–6 and Table 2, we can find the fol-
lowing observations:

(1) In Figs. 6, our proposed EFGCNs obtain better performance
than the basic GCNs models on the Citeseer, Cora and NELL
datasets. Moreover, EFGCNs improve GCNs 1.7%, 2.44%,
3.36%, 3.12% and 1.46% on the Cora dataset, 0.92%, 0.86%,
1.34%, 0.18% and 0.22% on the Citeseer dataset, 3.42%,
2.02%, 0.84%, 0.54% and 0.84% on the NELL dataset, respec-
tively, when randomly choosing 20%, 30%, 40%, 50% and 60%
(10%, 15%, 20%, 25% and 30%) labeled images from the train-
ing sets.
(2) As seen in Table 2, EFGCNs obtain a significant improvement
compared with several existing semi-supervised learning mod-
els. For example, when 120 training samples of the Citeseer
dataset are employed as labeled samples, EFGCNs improve
15.1%, 1.5%, 2%, 8%, 7.9%, 8.8%, 1.8%, 6.6%, 1% and 0.1% over
Multi-layer Perception, Manifold Regularization, Semi-
supervised Embedding, Chebyshev (K = 2), Chebyshev (K = 3),
GCNs, GAT, HyperGCNs, HesGCNs and GpLCNs respectively.
EFGCNs improve 0.8% over the state-of-the-art model
HyperGCNs when using 140 labeled training images from Cora
datasets.
(3) In summary, these results indicate that EFGCNs can acquire
richer data space structure information effectively even when
there are few labeled training samples available.

6.3. Remote Sensing Image Classification

In this section, we report the average recognition rates of all
categories in the RSSCN7 and SAT-6 datasets. To compare existing
semi-supervised learning models, Table 3 compares the classifica-
tion performance of our proposed EFGCNs and that of other meth-
ods on the RSSCN7 and SAT-6. In Table 3, we give the average
accuracy with 100 random weight initialization of all competing
methods under 650 and 150 labeled training samples of RSSCN7
and SAT-6 datasets respectively. We also follow the detailed exper-
imental setting in [23].

From Fig. 7 and Table 3, we can see that, with the increasing
number of labeled training samples, the mean recognition rates
dataset. Each subfigure corresponds to a single class.



Table 2
Average recognition rates performance comparison of EFGCNs and different semi-
supervised learning methods on the Citeseer and Cora.

Method Citeseer (120) Cora (140)

Multi-layer Perception 46.5 55.1
Manifold Regularization 60.1 59.5
Semi-supervised Embedding 59.6 59
Chebyshev (K ¼ 2) 53.6 49.8
Chebyshev (K ¼ 3) 53.7 50.5
GCNs 52.8 ± 3.3 57.2 ± 2.6
GAT 59.8 57
HyperGCNs 55 59.4
HesGCNs 60.6 59.7
GpLCNs 61.5 –
EFGCNs 61.6 ± 1.2 60.3 ± 2.5

Table 3
Average recognition rates performance comparison of EFGCNs and different semi-
supervised learning methods on the RSSCN7 and SAT-6.

Method RSSCN7 (650) SAT-6 (150)

Chebyshev (K ¼ 2) 27.1 38.5
Chebyshev (K ¼ 3) 27.4 40.1
GCNs 28.5 37.8
HyperGCNs 30.2 40.8
EFGCNs 36.7 41.3

Table 4
Mean Micro-F1 with multi-times experiments of all classes on the Cora database.

Methods 20% 30% 40% 50% 60%

GCNs 61.3 ± 2.7 64.2 ± 2.9 66.2 ± 2.2 68.1 ± 1.4 70.6 ± 7.5
EFGCNs 63.1 ± 1.6 66.7 ± 1.3 69.5 ± 1.3 71.3 ± 1.3 72.1 ± 1.2

Table 5
Mean Macro-F1 with multi-times experiments of all classes on the Cora database.

Methods 20% 30% 40% 50% 60%

GCN 53.5 ± 5.4 57.4 �5.3 60.1 ± 3.1 62.1� 2.4 65.8 ± 1.4
EFGCNs 58.6 ± 1.8 63.2 ± 1.6 66.1 ± 1.8 68.5 ± 1.5 68.6 ± 1.4

Table 6
Mean Micro-F1 with multi-times experiments of all classes on the RSSCN7 database.

Methods 10% 20% 30% 40% 50%

GCNs 19.7 ± 2.3 21.2 ± 3.3 25.4 ± 2.6 27 ± 0.6 28.7 ± 0.8
EFGCNs 28.7 ± 1.6 31.2 ± 1.3 32.7 ± 3.9 35 ± 1.4 36 ± 0.6

Table 7
Mean Macro-F1 with multi-times experiments of all classes on the RSSCN7 database.

Methods 10% 20% 30% 40% 50%

GCN 10.8 ± 2.2 13.5 ± 3.2 18.2 ± 4.7 20 ± 1 23 ± 1.2
EFGCNs 25.3 ± 2.2 28.6 ± 2 30.2 ± 0.7 32.8 ± 1.2 34.5 ± 0.7

Table 8
Mean recognition rates of each class on the Cora dataset.

Category Methods 20% 30%

Rule- GCNs 52.2 ± 11.8 51.8 ± 6.5
EFGCNs 58.5 ± 7.3 57.7 ± 4.7

Genetic- GCNs 36 ± 24.3 35.8 ± 18.9
EFGCNs 60.7 ± 19.7 53.9 ± 12.5

Case- GCNs 26.2 ± 10.3 48.2 ± 13.2
EFGCNs 43.1 ± 12.4 56 ± 11.4

Theory GCNs 26.9 ± 16.9 24.7 ± 13.7
EFGCNs 35 ± 16.9 46.9 ± 4.4
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of GCNs and EFGCNs increase. Our EFGCNs obtain the best perfor-
mance compared with other competing methods. Especially when
used only a small number of labeled samples, the superior
performance of EFGCNs is even more obvious. This also suggests
that our EFGCNs outperform GCNs in extracting the sample fea-
tures of graph-structured data because EFGCNs consider the local
geometry distributions of example graph and feature graph
simultaneously.

As seen in these results of Fig. 7 and Table 3, we can obtain the
following observations:

(1) Utilizing the spectral convolution to fuse the sample graph
and feature graph into one unified EFG, the proposed EFGCNs
can obtain around 4.8% improvement on the SAT-6 dataset,
8.5% improvement on the RSSCN7 dataset compared with
GCNs. These demonstrate the effectiveness of EFGCNs on
remote sensing image recognition.
(2) When EFG is used to describe the spatial structure informa-
tion of data with few labeled training samples, the proposed
EFGCNs 6.5% improvement in comparison with HyperGCNs
on the RSSCN7 dataset when using 650 labeled training sam-
ples. Compared with HyperGCNs, EFGCNs have a slight
improvement with 0.5% on the SAT-6 dataset when using 150
labeled training samples. The reason may be that the generated
EFG using spectral EFG convolution is insufficient in this case.

To further demonstrate the performance of EFGCNs in each
class, Fig. 8 shows the mean classification accuracy with multiple
experiments of several chosen classes in the RSSCN7 database,
such as grass, river lake, forest and field. Fig. 9 shows the average
recognition rates of several classes in the SAT-6 dataset including
trees, buildings and barren land. From these results, we can find
that, under most conditions, our EFGCNs perform better than
GCNs.

To better validate the effectiveness of our proposed EFGCNs
model, thus we introduce two standard numerical analysis criteria
(Micro-F1 and Macro-F1) on the Cora and RSSCN7 datasets under
the different label rates. From these experimental results in Tables
4–7, we can observe that EFGCNs all obtain superior classification
performances even if a small number of labeled training data were
used.
7. Conclusion

With the diversification of data structure, traditional data rep-
resentation learning models, such as CCA, PCA, CNNs and recurrent
neural networks, cannot effectively handle the graph-structured
data to extract more representative information. Recently, graph
convolutional networks (GCNs) have attracted increasing attention
of researchers in the field of machine learning. However, how to
better construct the high-order space structure information of data
is still a challenging problem while exploring the geometry struc-
ture of data for GCNs. In this paper, we have proposed a graph
40% 50% 60%

54.6 ± 5.6 58.6 ± 3.5 61.2 ± 3.7
62.1 ± 5.6 65.4 ± 4 65.6 ± 3.3
42 ± 5.9 42.6 ± 4.5 47.5 ± 4
63.6 ± 6.4 63.5 ± 6.7 65.3 ± 3.9
47.1 ± 5.4 55.2 ± 7.5 56.2 ± 4.6
59.3 ± 12.8 60.2 ± 9.4 58 ± 7
23.4 ± 9 24.4 ± 10.2 32.8 ± 5.3
47.2 ± 3.4 54.4 ± 7.3 48.8 ± 9.1



Table 9
Mean recognition rates of each class on the Citeseer dataset.

Category Methods 20% 30% 40% 50% 60%

IR GCNs 78 ± 4.2 79.7 ± 3.4 81.4 ± 3.4 81.3 ± 4.3 82.9 ± 1.7
EFGCNs 79.8 ± 3.4 81.4 ± 1.9 83.7 ± 1.4 84.9 ± 2.4 84.5 ± 1.8

HCI GCNs 57.1 ± 9 63.8 ± 6.4 62.8 ± 8.7 71.1 ± 4.3 73.7 ± 5.8
EFGCNs 73.8 ± 7.7 72.7 ± 5.9 72.5 ± 4.7 78.6 ± 3.5 75.5 ± 4.3

ML GCNs 84.3 ± 4.6 82.4 ± 2.5 83.5 ± 3.1 84.4 ± 3.2 85.6 ± 1.5
EFGCNs 79.6 ± 3.5 81.6 ± 4.2 83.8 ± 4.1 85.8 ± 2 85.7 ± 2

Agents GCNs 6.3 ± 5.5 5.9 ± 1 6.3 ± 2.4 8.5 ± 3.7 6.3 ± 3.6
EFGCNs 9.1 ± 6.7 6.7 ± 3.2 9.7 ± 6.5 3.7 ± 0.4 5.2 ± 2.8

Table 10
Mean recognition rates of each class on the RSSCN7 dataset.

Category Methods 10% 20% 30% 40% 50%

River GCNs 7.7 ± 1.5 31.3 ± 4.6 25.5 ± 2.7 25.8 ± 3.6 50.7 ± 22
EFGCNs 39.3 ± 10 37.7 ± 7.2 41.9 ± 6.3 45.2 ± 10.3 50.3 ± 4.9

Field GCNs 1.3 ± 0.3 9.9 ± 3 5.5 ± 0.5 2.3 ± 0.3 6.1 ± 4.9
EFGCNs 15.1 ± 9.6 12.8 ± 5 14.3 ± 4.7 11.5 ± 4.8 15.7 ± 3.1

Forest GCNs 39.9 ± 20.4 34.6 ± 1.9 33.2 ± 6 36.5 ± 3.2 35.4 ± 3.3
EFGCNs 32.8 ± 15.9 41.3 ± 2.8 39.5 ± 0.4 43.6 ± 6.1 41.3 ± 2.4

Grass GCNs 14.5 ± 3.2 26.2 ± 4.1 33.3 ± 4 50 ± 28.6 32 ± 17.2
EFGCNs 26.3 ± 1.6 31.8 ± 6.5 34.3 ± 6.7 35.8 ± 10.1 32.6 ± 6.3

Table 11
Mean recognition rates of each class on the SAT-6 dataset.

Category Methods 10% 20% 30% 40% 50%

Buildings GCNs 17.6 ± 17.4 16 ± 14.9 18.4 ± 17.8 38.4 ± 28.6 37.9 ± 28
EFGCNs 37.4 ± 21.7 49.8 ± 26.9 26.9 ± 13.8 56.3 ± 32.3 46.9 ± 22.1

Trees GCNs 22 ± 21.9 18 ± 17.2 24 ± 20.3 21.5 ± 21.1 29.7 ± 7.3
EFGCNs 54.7 ± 31.1 25.6 ± 24.4 40 ± 32.1 27.5 ± 26.7 25.8 ± 20.7

Barren GCNs 13.7 ± 13.3 37.8 ± 25.7 38.8 ± 23.3 36.4 ± 26.8 28.4 ± 27.1
EFGCNs 30.1 ± 28.2 36.4 ± 22.4 55.9 ± 26.8 39 ± 19.5 46.4 ± 10.3
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structure learning model, i.e. example-feature graph convolutional
networks (EFGCNs). We have not only considered the geometry
structure of data space (the local geometry distributions of row
vectors of high-dimensional data), but also utilized the local
geometry of feature space (the local geometry distributions of col-
umn vectors of high-dimensional data) during the training process
of EFGCNs. Compared with GCNs, EFGCNs can capture more accu-
rate space structure information that described the geometric dis-
tributions of data. Building a multi-layer EFGCNs allow us to
extract effective data features from original sample features. To
verify the performance of EFGCNs, we conduct extensive experi-
ments on four public datasets. for remote sensing and citation net-
works classification. The experiment results show the superiority
of our EFGCNs.
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[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, in: Proc. Int. Conf. Learning Representations, 2017..

[22] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778..

[23] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: Proc. Int. Conf. Learning Representations, 2017..

[24] R. Li, S. Wang, F. Zhu, J. Huang, Adaptive graph convolutional neural networks,
in: Proc. AAAI Conf. Artificial Intelligence, 2018..

[25] N. Yadati, M. Nimishakavi, P. Yadav, A. Louis, P. Talukdar, Hypergcn:
Hypergraph convolutional networks for semi-supervised classification, in:
Proc. Int. Conf. Multimedia and Expo, 2019..

[26] Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: Proc.
AAAI Conf. Artificial Intelligence, 2019..

[27] S. Fu, W. Liu, D. Tao, Y. Zhou, L. Nie, Hesgcn: Hessian graph convolutional
networks for semi-supervised classification, Inform. Sci. 514 (2020) 484–498.

[28] S. Fu, W. Liu, K. Zhang, Y. Zhou, D. Tao, Semi-supervised classification by graph
p-laplacian convolutional networks, Inform. Sci. 560 (2021) 92–106.

[29] S. Mallat, A wavelet tour of signal processing, Leiden (1999).
[30] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally

connected networks on graphs, in: Proc. Int. Conf. Learning Representations,
2013..

[31] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-
structured data, in: Proc. Adv. Neural Inf. Process. Syst., 2015..

[32] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, in: Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 3844–3852..

[33] M. Collins, S. Dasgupta, R.E. Schapire, A generalization of principal components
analysis to the exponential family, in: Proc. Adv. Neural Inf. Process. Syst.,
2002, pp. 617–624..

[34] B. Jiang, C. Ding, J. Tang, Graph-laplacian pca: Closed-form solution and
robustness, in: Proc. Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3492–
3498..

[35] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Comput. 15 (2003) 1373–1396.

[36] J. He, Y. Bi, B. Liu, Z. Zeng, Graph-dual laplacian principal component analysis, J.
Amb. Intel. Hum. Comp. (2018) 1–14.

[37] J.-X. Liu, C.-M. Feng, X.-Z. Kong, Y. Xu, Dual graph-laplacian pca: A closed-form
solution for bi-clustering to find checkerboard structures on gene expression
data, IEEE Trans. Knowl. Data Eng. (2019).

[38] X. Wang, J. Liu, Y. Cheng, A. Liu, E. Chen, Dual hypergraph regularized pca for
biclustering of tumor gene expression data, IEEE Trans. Knowl. Data Eng.
(2018).

[39] M. Yin, J. Gao, Z. Lin, Q. Shi, Y. Guo, Dual graph regularized latent low-rank
representation for subspace clustering, IEEE Trans. Image Process. 24 (2015)
4918–4933.

[40] P. Li, J. Bu, C. Chen, Z. He, D. Cai, Relational multimanifold coclustering, IEEE
Trans. Cybernetics 43 (2013) 1871–1881.
75
[41] L. Tong, J. Zhou, X. Bai, Y. Gao, Dual graph regularized nmf for hyperspectral
unmixing, in: Proc. Int. Conf. Digital Image Computing: Techniques and
Applications, 2014, pp. 1–8..

[42] C. Wang, N. Yu, M.-J. Wu, Y.-L. Gao, J.-X. Liu, J. Wang, Dual hyper-graph
regularized supervised nmf for selecting differentially expressed genes and
tumor classification, IEEE/ACM Trans. Comput. Bi. (2020), https://doi.org/
10.1109/TCBB.2020.2975173.

[43] R. Zeng, J. Wu, Z. Shao, L. Senhadji, H. Shu, Quaternion softmax classifier,
Electron. Lett. 50 (2014) 1929–1931.

[44] P.-T. De Boer, D.P. Kroese, S. Mannor, R.Y. Rubinstein, A tutorial on the cross-
entropy method, Ann. Oper. Res. 134 (2005) 19–67.

[45] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G.N.
Hullender, Learning to rank using gradient descent, in: Proc. Int. Conf. Mach.
Learn., 2005, pp. 89–96..

[46] J. Weston, F. Ratle, H. Mobahi, R. Collobert, Deep learning via semi-supervised
embedding, in: Neural Networks: Tricks of the Trade, Springer, Berlin,
Heidelberg, 2012, pp. 639–655.

[47] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples, J. Mach. Learn.
Res. 7 (2006) 2399–2434.

[48] C. Bai, J. Guo, L. Guo, J. Song, Deep multi-layer perception based terrain
classification for planetary exploration rovers, Sensors 19 (2019) 3102.

[49] Q. Zou, L. Ni, T. Zhang, Q. Wang, Deep learning based feature selection for
remote sensing scene classification, IEEE Geosci. Remote Sens. Lett. 12 (2015)
2321–2325.

[50] X. Gong, Z. Xie, Y. Liu, X. Shi, Z. Zheng, Deep salient feature based anti-noise
transfer network for scene classification of remote sensing imagery, Remote
Sens. 10 (2018) 410.

[51] G. Bisson, C. Grimal, Co-clustering of multi-view datasets: a parallelizable
approach, in: Proc. Int. Conf. Data Mining, 2012, pp. 828–833..

[52] C. Zhu, D. Miao, Entropy-based multi-view matrix completion for clustering
with side information, Pattern Anal. Appl. 1–12 (2019).

[53] H. Poon, P. Domingos, Joint inference in information extraction, in: Proc. AAAI
Conf. Artificial Intelligence, volume 7, 2007, pp. 913–918..

[54] S.-J. Huang, C.-T. Hsieh, Coiflet wavelet transform applied to inspect power
system disturbance-generated signals, IEEE Trans. Aero. Elec. Sys. 38 (2002)
204–210.

[55] P. Rieder, J. Gotze, J. Nossek, C.S. Burrus, Parameterization of orthogonal
wavelet transforms and their implementation, IEEE Trans. Circuits Systems II:
Analog Digital Signal Processing 45 (1998) 217–226.

[56] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proc. Int.
Conf. Learning Representations, 2014..

Sichao Fu received his master’s degree in electronics
and communication engineering from the China
University of Petroleum (East China), in 2020. Currently,
he is pursuing the Ph.D. degree at the Huazhong
University of Science and Technology. His research
interests include pattern recognition and deep manifold
learning.
Weifeng Liu (M’12-SM’17) received the double B.S.
degrees in automation and business administration and
the Ph.D. degree in pattern recognition and intelligent
systems from the University of Science and Technology
of China, Hefei, China, in 2002 and 2007, respectively.
He was a Visiting Scholar with the Centre for Quantum
Computation and Intelligent Systems, Faculty of Engi-
neering and Information Technology, University of
Technology Sydney, Ultimo, NSW, Australia, from 2011
to 2012. He is currently a Full Professor with the College
of Information and Control Engineering, China Univer-
sity of Petroleum, Qingdao, China. He has authored or

co-authored a dozen papers in top journals and prestigious conferences, including
four Essential Science Indicators (ESI) highly cited papers and two ESI hot papers.

His research interests include computer vision, pattern recognition, and machine
learning. Prof. Liu serves as an Associate Editor for the Neural Processing Letters, the
Co-Chair for the IEEE SMC Technical Committee on Cognitive Computing, and a
Guest Editor for the special issue of the Signal Processing, the IET Computer Vision,
the Neurocomputing, and the Remote Sensing. He also serves over 20 journals and
over 40 conferences.

http://refhub.elsevier.com/S0925-2312(21)01092-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0045
https://doi.org/10.1109/TMM.2018.2885237
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0055
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0055
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0075
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0075
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0075
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0140
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0140
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0145
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0180
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0180
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0185
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0185
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0185
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0190
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0190
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0190
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0195
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0195
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0195
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0200
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0200
https://doi.org/10.1109/TCBB.2020.2975173
https://doi.org/10.1109/TCBB.2020.2975173
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0215
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0215
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0220
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0220
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0230
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0230
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0230
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0230
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0235
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0235
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0235
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0240
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0240
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0245
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0245
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0245
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0250
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0250
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0250
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0260
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0260
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0270
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0270
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0270
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0275
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0275
http://refhub.elsevier.com/S0925-2312(21)01092-4/h0275


S. Fu, W. Liu, K. Zhang et al. Neurocomputing 461 (2021) 63–76
Zhang Kai received the Ph.D. degree in petroleum
engineering from the China University of Petroleum
(East China), Qingdao, China, in 2008. From June 2007 to
May 2008, he studied with the University of Tulsa,
Tulsa, OK, USA. He has been a Teacher with the China
University of Petroleum (East China) since 2008. He
teaches courses, including fluid flow in porous media
and reservoir engineering. As a Project Leader, he has
been in charge of three projects supported by the Nat-
ural Science Foundation of China, one project supported
by the National Natural Science Foundation of Shandong
Province, and 20 projects supported by SINOPEC,

CNOOC, and CNPC. He has already published more than 60 papers. His research
focuses on reservoir simulation, production optimization, history matching, and the

development of the nonconventional reservoir.
76
Yicong Zhou (M’07-SM’14) received the B.S. degree in
electrical engineering from Hunan University, Changsha,
China, and the M.S. and Ph.D. degrees in electrical engi-
neering from Tufts University, Medford, MA, USA. He is
currently an Associate Professor and the Director with
the Vision and Image Processing Laboratory, Department
of Computer and Information Science, University of
Macau, Macau, China. His research interests include
chaotic systems, multimedia security, image processing
and understanding, and machine learning. Dr. Zhou was
a recipient of the Third Price of Macau Natural Science
Award in 2014. He served as an Associate Editor for the

Neurocomputing, the Journal of Visual Communication and Image Representation,
and the Signal Processing: Image Communication. He is a Co-Chair of the Technical

Committee on Cognitive Computing in the IEEE Systems, Man, and Cybernetics
Society.


	Example-feature graph convolutional networks for semi-supervised classification
	1 Introduction
	2 Related Works
	2.1 Graph Convolutional Networks
	2.2 Graph Principal Component Analysis

	3 Example-Feature Graph
	4 Single-Layer EFGCNs
	5 Multi-Layer EFGCNs
	6 Experiments
	6.1 Experiment Settings
	6.2 Citation Networks Classification
	6.3 Remote Sensing Image Classification

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A 
	References


